[11:00-] ECE 313 course content summarized in one page

[11:10] Discrete, continuous Fourier transform, z transform, Laplace transform

Discrete-time

Fourier transform

$$X(e^{j\widehat{\omega}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\widehat{\omega}n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

When it's valid to do so,

$$X(e^{j\widehat{\omega}}) = X(z)|_{z=e^{j\widehat{\omega}}}$$

Continuous-time

Fourier transform

$$X(j\omega) = \int_{t=-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$X(s) = \int_{t=-\infty}^{\infty} x(t)e^{-st}dt$$

When it's valid to do so,

$$X(j\omega) = X(s)|_{s=j\omega}$$

[11:20] Differences between continuous and discrete time

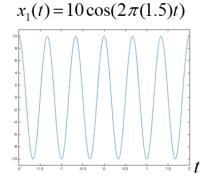
- Time variable: integer valued (discrete-time) or real-valued (continuous-time)
- Origin is included is included in discrete time
- Discrete-time frequency is 2π periodic

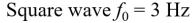
[11:25] Many ways to describe signals

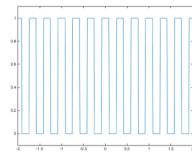
- Function e.g. $x(t) = A\cos(\omega_0 t + \phi)$
- Sequence of numbers, e.g. {1,2,3,2,1}
- Set of properties, e.g. even symmetric, causal
- Piecewise representation
- Generalized function, .e.g Dirac delta $\delta(t)$

[11:30] Two-sided, one-sided, and finite length signals

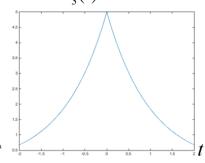
Two-sided signals extend infinitely in positive and negative directions of time axis



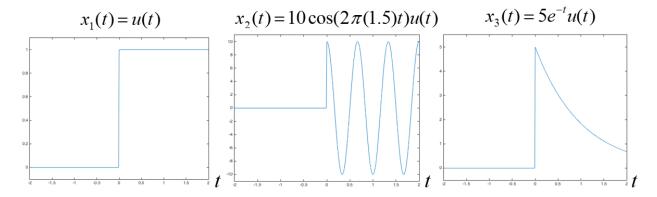




$$x_3(t) = 5e^{-|t|}$$



One-sided signals only extend in one direction of the time axis. Causal signals are equal to zero for t < 0.



Finite length signals are equal to zero outside some time interval $t_1 \le t \le t_2$

$$\operatorname{rect}(t) = \begin{cases} 1 & \text{if } -\frac{1}{2} \le t < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$x_2(t) = 10 \cos(2\pi(1.5)t) \operatorname{rect}\left(t - \frac{1}{2}\right)$$

[11:35] Unit impulse (Dirac Delta)

The Dirac Delta δ is an idealism for an instantaneous event. It is defined by two properties:

<u>Unit area</u>	Sifting property
$\int_{t=-\infty}^{\infty} \delta(t)dt = 1$	$\int_{t=-\infty}^{\infty} g(t)\delta(t)dt = g(0)$

The Dirac delta can also be expressed as a limit. Consider a rectangular pulse $P_{\epsilon}(t)$ with width 2ϵ and unit area:

$$P_{\epsilon}(t) = \frac{1}{2\epsilon} \operatorname{rect}\left(\frac{t}{2\epsilon}\right) = \begin{cases} \frac{1}{2\epsilon} & \epsilon \leq t < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

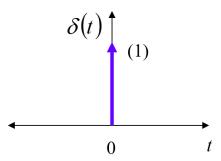
The Dirac Delta can be defined as the limit as the width of the pulse goes to zero, while keeping the area constant:

$$\delta(t) = \lim_{\epsilon \to 0} P_{\epsilon}(t)$$

Area =
$$\lim_{\epsilon \to 0} \frac{2\epsilon}{2\epsilon} = 1$$

In practice, we can emulate the Dirac Delta using a finite width ϵ (e.g. if system operates on a time scale of seconds, use $\epsilon < 10^{-6}$ seconds).

By convention, plot the dirac delta as a vertical area and denote its area using parentheses.



The direction of the arrow indicates the sign ($\delta(t)$ vs $-\delta(t)$)

[12:00] Properties of unit impulse

Generalized sifting, assuming a > 0

$$\int_{t=-a}^{a} \delta(t-T)dt = \begin{cases} 1 & \text{if } -a < T < a \\ 0 & \text{otherwise} \end{cases}$$

Consider the effect of integrating the product of a function $\phi(t)$ with $\delta(t)$:

$$\int_{t=-\infty}^{\infty} \phi(t)\delta(t-T)dt = \int_{t=-\infty}^{\infty} \phi(t+T)\delta(t)dt = \phi(T)$$
 (sifting property)
$$\int_{t=-\infty}^{\infty} x(\lambda)\delta(t-\lambda)dt = x(t)$$
 (convolution with $\delta(t)$)

Slide 12-7 Dirac Delta 11/18/25

rect(t) =
$$\begin{cases} 1 & \text{if } -\frac{1}{3} \le t < \frac{1}{3} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\delta_{\varepsilon}(t)}{2\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3} \le t < \frac{1}{3} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{2} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{2} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{2} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{2} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if } -\frac{1}{3\varepsilon} \le \frac{t}{3\varepsilon} \end{cases}$$

$$\frac{1}{\varepsilon} = \begin{cases} 1 & \text{if$$

[12:10] Continuous-time systems

Systems operate on signals to produce new signals or new signal representations.

$$x(t) \longrightarrow T\{\bullet\} \longrightarrow y(t)$$
$$y(t) = T\{x(t)\}$$

Additivity, homogeneity, and time-invariance definitions are the same as discrete-time:

Additivity

Let $x_1(t)$ and $x_2(t)$ be arbitrary input signals to a system S. The system satisfies additivity if

$$\mathcal{S}\left\{ x_{1}(t) + x_{2}(t) \right\} = \mathcal{S}\{x_{1}(t)\} + \mathcal{S}\{x_{2}(t)\}$$

Homogeneity

Let x(t) be an arbitrary input to a system S. The system satisfies homogeneity if, for any constant a,

$$\mathcal{S}\left\{ax(t)\right\} = a\mathcal{S}\left\{x(t)\right\}$$

Time-invariance

Let x(t) be an arbitrary input to a system \mathcal{S} and let $y(t) = \mathcal{S}\{x(t)\}$ be the corresponding output. The system \mathcal{S} is time-invariant if, for any time shift τ ,

$$\mathcal{S}\left\{x(t-\tau)\right\} = y(t-\tau)$$

Linear time-invariant (LTI)

A system is linear time-invariant (LTI) if it satisfies the additivity, homogeneity, and time-invariance properties. A common way for a system to fail to violate these properties is if the system has has nonzero initial conditions.

[12:15] Initial conditions

Observe signals and systems starting at time t = 0.

Example: observe integrator for $t \ge 0$

$$y(t) = \int_{u=-\infty}^{t} x(u) du = \underbrace{\int_{u=-\infty}^{0} x(u) du}_{\text{initial condition,} C_0} + \int_{u=0}^{t} x(u) du$$

For $t \ge 0$, input signal x(t) gives output

$$y(t) = C_0 + \int_0^t x(u) \, du$$

For linearity, the initial condition C_0 must be zero. We can see this from the all-zero input test—when x(t) = 0 for $t \ge 0$, the only way that y(t) = 0 for $t \ge 0$ is if $C_0 = 0$.

Homogeneous? Let the input be a x(t) and the output be

$$y_{scaled}(t) = C_0 + \int_0^t (a x(u)) du = C_0 + a \int_0^t x(u) du$$

When does $y_{scaled}(t) = a y(t)$ for all possible constants a? When $C_0 = a C_0$ or $C_0 = 0$.